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SUMMARY

This memorandum describes a method of calculating the equivalent

circuits of discontinuities in coaxial lines caused by abrupt changes

of radius in one or both of the coaxial conductors. The theory is

fully worked out for discontinuities of the inner conductor alone;

the implementation of the final equations on a large computer is

described; and the performance of the resulting program is discussed,

including the effects of truncation error and extrapolation to

infinity. Finally, the use of the theory in connection with coaxial-

line reflection and transmission standards is described, and a simple

error analysis of these standards is presented, which shows that (at

present) their performance is calculable to an accuracy limited only by

the precision to which they can be made
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1 INTRODUCTION

This memorandum describes a pzactical method of calculating the equivalent

circuits of coaxial-line discontinuities of the types shown in Pigs la-le. The

method used can be applied to many similar problems in one-conductor or two-

conductor waveguide systems, as described by Harrington(l]; but Harrington's

treatment is completely general and gives no feeling for the computational

details which are essential when the method is applied to a particular case.

Accordingly, the treatment presented here discusses fully two particular cases

which are important in practice, and uses them to illustrate the general theory,

thus complementing Harrington's exposition.

The method applies in principle to any problem involving semi-infinite

"generalised cylindrical waveguides" joined at a plane at right-angles to their

common axis. (A generalised cylindrical waveguide is defined by translating a

simple closed plane curve at right-angles to its own plane, as shown in Figs 2.)

The behaviour of the electromagnetic field in the neighbourhood of the dis-

continuity plane in such a system can be characterised by an equivalent circuit

located at that plane; the discussion which follows will show this, establish

that the form of the equivalent circuit is a single shunt element (in general)

and obtain an expression for its value. The numerical aspects of calculating

the value will be described also, as will the practical importance of the work

(for standards of coaxial-line impedance) and the factors affecting accuracy.

2 PRELIMINARIES ON FIELDS AND MODES

The first stage in the treatment of any particular case is to express the

fields in the guides in terms of the permitted modes for that case. The theory

of modes in generalised cylinders has been fully discussed elsewhere (eg [1).

[2] and [3 ), so this section will only present a summary of the important facts.

If a region of space (such as the interior of a generalised cylinder) is

linear, isotropic, homogeneous and non-conducting, and contains no free charges

or current-carrying elements, any electromagnetic field within it may be written

as the sum of two partial fields, one of which has its E vector transverse to

an arbitrary fixed direction in space (a transverse electric or TE field) while

the other has its H vector transverse to the same arbitrary fixed direction (a

transverse magnetic or TM field); and each partial field can be derived from a

single scalar function which satisfies the wave equation. When we deal with
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generalised cylinders having a common axis it is convenient to make that axis

the arbitrary fixed direction and call it the z-direction; then fields which

vary in time as exp(jwt) can be derived from scalar functions T satisfying

Helmholtz' equation

2z
( 2 T(1)

where k is the free-medium angular wavenumber corresponding to w and V2 is the

two-dimensional Laplacian operator transverse to z. These functions T satisfy

boundary conditions which are independent of z, and so eqn (1) is separable,

giving

2 ,2
(VT + k')p = 0 (2a)

with

=T = (2b)

2
d2 2 = 0 (2c)

dz
2

and

y2 .k' 2 - . (2d)

The boundary conditions on T become boundary conditions on t; and it turns out

that eqn (2a) admits non-trivial solutions only for particular non-negative real

values of k '2 , and corresponding values of 72 from eqn (2d), each with its own22

corresponding field. Each of these sets (k 2 , y and corresponding field)

constitutes a mode, and any possible field within a generalised cylinder can be

expressed as a linear combination of all the modes for that cylinder. (This

does not conflict with the division into TE and TM fields, because each mode

can be classified as TE or TM.)

Power is freely propagated only by the fields of those modes which admit

oscillatory, rather than exponentially-decaying, solutions to eqn (2c), that is,
2

those which have negative values of y . There are only a finite number of these,

and the number depends on the frequency; in one-conductor systems at sufficiently
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low frequencies there are none at all. However, in two-conductor systems there

is always one mode having k 2  0 0, which will propagate power at any frequency.

This mode belongs to the TM class, but has special properties and is often

considered to be in a class of its own; because its E and H vectors are both

transverse to the z-axis, it is called transverse electromagnetic (TEM).

3 ROTATIONALLY-SYMMETRIC SYSTEMS

It is possible to write down the modes which can exist in systems like

those in Fig 1, from the discussions in [1] and [2]. Alternatively, we can

derive them directly by using rotational symmetry about the z-axis instead of

the translational symmetry along it.

Subject to the restrictions introduced already, Maxwell's equations for a

field varying as exp(jwt) take the form (see (21)

curl E + jwVH - 0 (3a) div H - 0 (3b)

curl H - jwE = 0 (3c) divE = 0 (3d)

in the usual notation.

We introduce cylindrical polar co-ordinates, expand the vector operators

in eqns (3) and enforce rotational symmetry by setting to zero all the partial

derivatives with respect to 0, giving (see Fig 3)

= 0 (4a)

(oE + jw* = 0 (4b)

aH aH
P- a. z jwrE 0 (4c)
z ao

(pH,) +- - 0 (4d)

jai{= 0(5a)
H -0

.- (pH) jweE2  0 (5b)

4
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DE aE
+ +.J)JH¢ (5c)

az ap

aa E
(PEP) + z 0 (5d)p ap ap

On substituting eqns (4a) and (4b) into eqns (4c) and (4d), we find that

(4d) is satisfied identically and that (4c) takes the form

a2  1 a2
(p (pE) + (pZ) + k(pE) 0 (6)

ap2 p a 3z2

with

k2 = 2 E (6a)

as usual. A similar treatment of eqns (5) leads to

2a (pH2 - (PH +2 a2  
+ k2 (pH ) 0 (7)

Bp 2 1 a(pHz

The boundary conditions to be used with eqns (6) and (7) follow from the

requirements that the tangential electric field on any perfectly-conducting

surface must vanish. Using eqns (5a) and (Sb), we deduce

(pE) = 0 (8a) -0 (pH€) 0 (8b)

where n denotes a normal to the boundary surface (or surfaces). Eqns (4), (6)

and (8a) specify a TE field, E¢ being obtained by solving (6) subject to (8a)

and the dependent components H and H being given by (4a) and (4b); similarlyp a

eqns (5), (7) and (8b) specify a TM field having components H , E0 and E .

4 CYLINDRICAL SYMMETRY

To apply these results to the systems represented in Figs 1, we begin by

solving eqn (7) using eqns (2). Writing

(PH) ,(p) (z) (9a)
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we obtain

2!
d y C o and y 2 k 2-k 2asin (2), and

dz2

dA21 1id k ,2 = 0 (9b)
dp2 p dp

If k'2 - O, eqn (9b) has the solution 'p AP2 + B, where A and B are arbitrary

constants; otherwise the solution is

= (k'p)(A'JI(k'p) + B'YI(k'p)) (9c)

where A' and B' are arbitrary constants and J and Y are Bessel's functions

of the first and second kinds of order 1, as may be shown by substitution.

Eqn (6) gives similar solutions for (pE,), but we shall see that these are not

actually needed.

The systems of Figs lare made up of right circular cylinders butted

together. Accordingly, everywhere except at the plane of discontinuity the

boundary conditions (eqns (8)) take the form (pEt) 0 and -L (PH) O at one

or two particular values of p, depending on whether the system contains one or

two conductors; and if there is only one conductor the field components must be

finite at P - 0.

It is usual to operate coaxial systems under conditions such that the TEM

mode is the only one which can freely propagate power; from the boundary con-

dit'ons and the special solution we find that this mode is given by (pH ) - 'C B=

(no non-trivial special solution for (pE ) is possible, and the solution for

(pH ) also vanishes if there is only one conductor). The TEM mode is a TM field,

and systems like those of Figs I (with rotationally-symmetrical discontinuities

as well as conductors) have independent TM and TE fields. It follows that only

a TM field can exist in the systems of Figs 1 when they are worked so that the

TEM mode is the only one freely propagating; any TE field travelling inwards

from infinity would decay to zero before encountering the plane of discontinuity.

Consequently, if we obtain the permitted modes for the systems of Figs 1 by

treating them as generalised cylinders, we must reject all TE modes, as well as

all TM modes which are not rotationally-symmetrical.
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If these rejected modes are considered, it turns out that at least one

of them begins to propagate power freely at a frequency at which all the

retained modes are still cut off. (See [2 for a full discussion.) Because

of this, there are two "critical frequencies" for any system of the type con-

sidered here; a lower critical frequency above which at least one (TE) mode

propagates freely, and an upper critical frequency above which at least one of

the retained modes propagates freely. (Conveniently, the TM mode with the

lowest cut-off frequency is one of the retained modes, otherwise - since the

TE modes and the rotationally-asynmetrical modes are rejected for different

reasons - there would be three critical frequencies.) The analysis which

follows is formally valid below the upper critical frequency, but will only

hold between the two critical frequeicies provided that all TE modes have been

filtered out before one of the discontinuities represented in Figs 1 is

encountered. Expressions for the critical frequencies, after [2], will be given

later.

5 DEVELOPMENT OF THE PROPER MODAL EXPANSION

We are now ready to construct the modal expansion of the allowed field in

any of the systems of Figs i; the one shown in Fig lb will be used, because

its practical importance was the reason for undertaking the work described here.

In this case the boundary condition

a (pH ) = d P

Tp dp

must be satisfied at p = rA and p = R on the A-side of the discontinuity plane,

and at P = rB and P = R on the B-side. The TEM mode already satisfies this

condition; for the TM modes, using eqn (9c) and the relations

dd
Tx (xJl(x)) = xJ (x) and d- (xY,(x)) xY(x)

we obtain

(k'p)(A'J (k'p) + B'Y (k'p)) - 0 (10)

to be satisfied at the proper values of p.

On the A-side, the only non-trivial values of k' satisfying eqn (10) are

those which satisfy



J 0(k'r A)Y (k'R) -J 0(k'R)Y0'r A) 0 (10a)

From Watson 141, the roots of eqn (10a) are real, positive and distinct; they

will be denoted by k Ai' where i is a positive integer and k Al<k2< k A *

Similarly, on the B-side we have a set of k Bi (k BI < k 2< k 3 ... ) satisfying

J k'rB)(k'R) - J (k'R)Y (k'rB 0 (10b)

The boundary condition also determines, for each allowed kV, the proportion4

of the combination of J 1(k'p) and Y I(k'p) in the corresponding P. We must take

care that this proportionality does not become infinite, so we write the

allowed *, functions on the A-side as

4Ai = A~.(k A.p) (JlI k Aip + () Ai Y Ik Ai p (11)

with a similar equation on the B-side; the degenerate form of this is then

A'i(kiP)(Jl(k ip)) which is the proper function for the degenerate form of

Fig lb (namely Fig la). The boundary condition d* Ai /dP = 0 at p- rA and p = R

then gives, taking A'. 0 0,

oB\J0( AiAd o (kAi R)(12)
(A) Ai = 0 Y(k AirA = 0 Y(kAiR)

We see that eqs (10a) is the consistency condition associated with eqn (12).

A similar result holds good on the B-side.

We now define the following six families of functions:

z 0(kAip) =Jo(k Aip) + (B'/A' )AiYo (k A. p)

z I(k Aip) = Jl(k Aip) + (B'/A' )AiYl (k Aip) (13a)

z 2(k Aip) = J2 (k Aip) + (B'/A' )AiY2(k Aip)

z 0(k BiP) - J 0(k Bp) +. (B'/A' )Biyo(kBip)

z 1(k Bip) - Jl(k Bip) + (B'/A' )BiYl (k Bip) (13b)

z 2(kBi P) - J 2(k Bip) + (B'/A' )BiY2(k Bip)



noting that these Z functions must always have arguments of the form (kAiP) or

(kBiP) so that the (B'/A') factor is defined. From eqns (11), (12) and (13)

we obtain

Z o (kAiA Zo(kAiR)  Z Bo(k rB) = Zo(k.P) = 0 (14)

for all i,conveniently expressing the boundary conditions, and

Ai = A'i(k AiP)Z (k Ai )  (15a)

with a similar equation on the B-side.

To complete the construction of tne mode functions, we refer to eqn (9a)

and the equations immediately following it; these give

(PH 0) OA= Ai Ai(z) (15b)

with C Ai(z) satisfying

d2Ai 2

i2 CAiAi =0
dz

and

2 = k2  k 2  (15c)
-Ai Ai A

From eqn (6a) we have

2 2
k = wI C (15d)
A A A

in an obvious notation; and, as always, similar equations hold on the B-side.

The functions c(z) for the modes which do not propagate power freely must give

fields which decay as we move away from the discontinuity plane; so, taking z

to be zero at that plane and positive on the B-bide, we have C functions of the

form eYA iz and v (taking yAi' YBi all positive). No arbitrary multiplying

constant is needed with these functions, since there is already one in each W

and only the products r are physically significant. For the TEM mode we must

include fields freely propagating in both directions and on both sides of the
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discontinuity plane, and from eqn (15c) we have yTEM ±ikA or ± jk . The

complete field is a linear combination of all these possible mode fields (by

[II and [2)), so, if we write

A' = - . 7
Ai kAi Ai

! (16)

ABi = kBiYBi 8i B _

in terms of the material constants pAP EA' PB and EB, then eqns (15) give

He (z <0) 1a (e-kA r ekAz +

+ j- - ale Z (k ip)
~ ~A / 1 Aip

(17a)
1 / Jk~z -JkBZ\

H -- ( e + Be +

B

+ tQ B.) e-YBjz z1 (kBjP)

j ( Yjl

The signs and multiplying factors here have been chosen for convenience

later. These equations hold for the degenerate case, Fig la, as well as in the

case of Fig Ib, except that F "anishes when the inner conductor is truncated.

To complete the representation, we use eqns (5) and (17a) to obtain

I e-jk Az  Jk Az) 0 Y

E (z < 0) - a (e 0 Ae + rAe )+ aie i z 1l(kAip)

(17b)

E (z > 0) - o (ejkBz + -je).z YBj zl P)

:.1
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and

S/k \ yj z
Ez (z < 0) = Ai e.e Zo(k Aip)

(17c)
°0

(z > 0) = !B Zo(kz Us 0/
1=1 \Bj/

To obtain eqns (17c) we use, as before, the relations

d d
j- (xJl(x)) = xJ (x) and (xY,(x)) = xY (x)

together with eqns (13) to deduce that

d

d(k Ai) ((kAip)Z 1 (kAio)) = (kAip) o(k Aip)

with a similar equation in kBj. Eqns (14) and (17c) confirm that our represen-

tation satisfies all the boundary conditions introduced so far.

rA and rB can be regarded as voltage reflection coefficients if E .or

some quantity proportional to it, is taken as the measure of "voltage". We

will refer to this later.

6 GENERALISED MODES AND CRITICAL FREQUENCIES

The most general set of modes in coaxial systems includes others not

derived here, depending on Bessel functions of higher orders and exhibiting

rotational asymmetry. These are of no significance in the theory of the equi-

valent circuit of the discontinuity, but they must be taken into account in

determining the critical frequencies referred to previously.

The upper critical frequency is derived from eqns (10), since it turns out

that the TM mode with the lowest frequency of free propagation is rotationally-

symmetrical (it is the one usually denoted TMo1 ); it begins to propagate freely

at the lower of the two frequencies VA, vB given by

2 vAAFA kA k Al (18a)

11



21vBV BB E kB  - kBl (18b)

using the notation already introduced. The lower critical frequency, however,

relates to a rotationally-asymetrical mode, the so-called TE11 mode (which is

actually a pair of degenerate modes distinguished only by their planes of

polarisation); and to characterise this mode-pair we must replace eqns (10) by

J,(k'rA)Yj(k'R) - J (k'R)Y;(k'rA) = 0 (19a)

and

Jj(k'rB)Y;(k'R) - Jj(k'R)Y,(k'rB) = 0 (19b)

where the prime on the Bessel functions denotes differentiation. The lowest

values of k' satisfying these equations are then used in eqns (18) to find the

critical frequency.

Good approximate solutions of these equations may be deduced from the

discussion in [21 and are as follows:

lower critical frequency = smaller of 1/( V4ATA (R + rA))

and 1/(n . (R + rB))

upper critical frequency = smaller of 1/(24iiTAcA (R - rA))

and l/(2 VVieB (R - rB))

If we take R = 3.5 mm, rA = rB = 1.52 mm,U =B = Vol A = B = Eo (the

parameters of a 7 mm-bore precision air-spaced coaxial line), these approximate

formulae give the critical frequencies as 19.0 and 75.7 GHz, the exact values

being 19.4 and 75.1GHz to the same number of significant figures. It is worth

noting that changing the radius of the inner conductor causes the critical

frequencies to move in opposite directions, so, when "A ' VB and cA = CB (as

is usually the case) the lower critical frequency is fixed by rA and the upper

one by rB . (rA is greater than rB; see Fig lb.) These conclusions need

modifications in detail for the systems of Figs Ic and ld, but the principles

are the same.
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For the system of Fig la, eqns (lOb) and (19b) reduce to the much simpler

forms

J (k'R) = 0 (20a) and J (k'R) = 0 (20b)

The lowest values of k' satisfying these equations are very nearly (2.405/R)

and (1.841/R) respectively, from which we obtain approximate critical frequencies

as follows:

lower critical frequency - smaller of 1/(nVfA A (R + r))

and 0.920/(r iBcB R)

upper critical frequency = smaller of 1/(2 ApA (R - r))

and 1.202/(n 41; BB R)

If we take the same dimensions and material constants as before, the approxi-

mate critical frequencies are 19.0 and 32.8 GHz, the exact values being 19.4

and 32.8 GHz to the same number of significant figures. The interesting point

here is the large reduction in the upper critical frequency; this makes the

behaviour of the equivalent circuit change with frequency considerably more

rapidly than it does in the ordinary coaxial system (Fig ib).

7 THE FIELDS IN THE PLANE OF DISCONTINUITY

We are now ready to begin the derivation proper. In the introduction it

was promised that this would be presented in a way which illustrated the proper

approach to other similar problems; so we note that equations corresponding to

eqns (17) will exist for any problem involving generalised cylinders and the

first stage of any derivation is always to find the corresponding equations

representing the fields. (Various important special cases are discussed in

[21.) Next, we determine the transverse fields at the discontinuity plane, and

apply the boundary condition that they must be continuous (since the tangential

components of E and H are continuous across any surface not supporting a surface

current). There is one other boundary condition to be applied: the transverse

components of E must vanish on those portions of the discontinuity plane which

are parts of the perfectly-conducting cylinders (rB 4 P < rA in the system of

Fig lb, 0 < P < r in that of Fig la, for example). All this is readily

13
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generalised; in our particular case, writing tp and for the values of E

and H at the discontinuity plane z - 0, we obtain

40'
_ (1 + r) + aiZl(kAiP) (r p R)

p Po0 A 1 ip A
i=l1

s (i + r + 8Zl(kBjP) (rB p R) (21)
j=l

=0 (rB p P ' rA)

- a (1 - rA) +. I a (Z ( kp) (rA p R)

A P 0 A '4 T i ) ilI AipA

(22)Ij)IA
- --- - 1 + rB) + ) ( (P (rB < R)

nB o 0j=1 Jj B k

These equations completely express the boundary conditions at z = 0, since

in the present problem E and H are the only transverse components of the E

and H fields.

8 CURRENT AND VOLTAGE IN THE PRINCIPAL MODE

The next stage in the development is to obtain expressions for the "current"

and "voltage" at the transverse plane z = 0. In the present case, since we are

dealing with a two-conductor system, natural meanings can be attached to these

quantities because the transverse field distribution arising from a TEM mode is

essentially independent of frequency. If we make use of this fact to reduce the

problem to an electrostatic one, eqn (3a) becomes

curl E = 0 which implies that E = - grad V. From this we obtain

outer
radius

voltage = [6p] dp (23a) taking the inner conductor as positive

inner with respect to the outer one, where
radius means "the TEM part of".

14



In electrostatic terms, this corresponds to making the inner conductor the line

and the outer one the return. The current in the inner is then positive, and

is related to the magnetic field it produces by the most general electrostatic

form of eqn (3c), which is (see [21)

curl H = J. Applying Stokes' theorem (see [21) to this, taking V as a

simple closed curve around the inner conductor lying in

the plane z = 0 and taking S as the portion of z = 0 bounded

by 0, we have

current= ffJ1dS J[H(z=O)] .dl = f Xjpd (23b)

S )

in terms of the elementary vector area dS of S and the elementary vector length

dl of 0. The use of)X does not mean that this current is flowing in the z = 0

plane; it is the z-directed current flowing into or out of that plane (in the

positive z-direction).

These definitions of voltage and current can readily be generalised to other

two-conductor systems. For one-conductor systems, however, there are no

"natural" definitions available, and it is necessary to appeal to arbitrary

definitions based on reflection coefficients; the fundamental relation here is

that giving the reflection coefficient r of an admittance Y normalised to a

characteristic admittance Y (see [ 1], [31)
0

Y 1 - r
Y l+r

0

This relation can be used in conjunction with eqns (21) and (22) to obtain Y,

by the method described in [ 1]; but this method involves several complications,

in particular the introduction of the concepts of reaction and complex power,

and the implied assumption that the mode constants ai, B • are all real (or at

any rate can be made so by multiplying them all by the same complex number).

We will avoid these problems by continuing the development independently of

[] (an example of the connection between the two treatments will be given later).

9 THE INTEGRAL RELATIONS

At this point we introduce four essential integral relations between the

mode functions. It is well known, and is proved in [1], [2] and [3], that the

15



mode functions appearing in such equations as (17) are orthogonal with respect

to the cross-sectional area of the generalised cylindrical system to which they

-4 relate; that is, if fl(P,t) and f2 (p,o) are two such transverse mode functions,

then

transverse

f J] (Pf 2 (p, )dA =0 unless fl f2

cross-section

In the present case, where dA is pdpdo and the functions are all independent

of 0, this suggests hat integrals of the form

fil(P)f2 (p)pdp

will be important. Regarding the TEM mode function as being in a class of its

own, we obtain four such fundamental integrals, all of which can be put in

closed form using 14] (similar results also exist in other problems with

generalised cylinders, but they cannot usually be expressed so conveniently;

see 121). The relations are

w(i)2 PdP = In p (24a)

fIz(op)pdp = 2 (Z(Op) - Z(ep)z 2 (8)) (24b)

](!)Zl(8p)pdP - Zo(eP) (24c)

l (6p)Z1 (p)pdp =(2 1 2 (OPZl(eP)Z(Op) - 0pZl()Z(80)) (24d)

Eqns (24c) and (24d) are the orthogonality relations properly so called, and

when suitable limits are inserted and eqn (14) used it can be seen that the

mode functions are indeed orthogonal. (The definitions of the Z functions are

taken from eqns (13).) Eqn (24d) is valid even if e and 0 belong to different

families (one a kAi and the other a kBj) although orthogonality does not then

hold good.
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10 CURRENT AND VOLTAGE AT THE PLANE OF DISCONTINUITY

From eqns (14), (21), (22), (23) and (24c) we can now determine the

voltages across the discontinuity plane, and the currents flowing into it and

out of it, on the A and B sides. In an obvious notation we have

R R

VA f R f J rA)dp 00(1+ rAln(R/r (25a)

ItA rA

and

R R

B J J dp o(l + rB)dP = (1 + rB)ln(R/rB) (25b)

r Br BrB

Also

= J -(l + rA)d = (k dp

rA A i=l

(using eqns (24c) and (14), and inverting the order of integration and summation

as usual in Fourier analysis)

6dp =f e dp .1 0(1 + rB + Y ~l(kB.) dp

rA rB rB j=l

from eqn (21)

R

(1 + r)dp from eqns (24c) and (14)

rB

= VB = V (say) (25c)

17



Again

27t 27r

I = pdO - (1 rA = 2a - ° (l - r ) (26a)
A = ~ f Arh 0A Ao1 A

0 AA

2 1 2w o1 B
I B  . pd - - ae(- I + r) pd, L a 0-r

B ~ JJ nBp B T1 B

(26b)

Since V, = VB, it is clear that the equivalent circuit representing the

discontinuity must consist simply of a shunt advittance; any other components

would introduce a voltage di ontinuity across z - 0. (In the truncated system

(Fig la) VB has no meaning; b it in this case there is no free propagation

beyond z = 0 and the equivaleit circuit of the whole system is terminated there,

so we again arrive at a shunt admittance as the representation of the dis-

continuity.) A current IA arrives at z - from the A side and a current IB

leaves z = 0 from the B side 'since IA and IB are both flowing in the positive

z-direction, by eqn (23b)). Che difference of these two currents must be

considered to be driven throu,,h the shunt admittance, Y, by the voltage

VA= VB V; so

YV I A - IB  (27)

This equation also applies to the system of Fig Ia, since then 0- 0

(as remarked after eqn (17a)) and so from eqn (26b) IB = 0; eqn (27) then

st tes that the entire curtnt IA arriving at z = 0 from the A-side is diverted

th"ough the shunt admittanc- Y, which is clearly true since in this system

th! equivalent circuit is a terminating impedance at z = 0. In this case the

siiplified form o' eqn (27). YV IA % may be reduced using eqns (25) and (26)

to

which illustrates the ,ener, . relation from [1) stated previously,

Y 1 - r
Y 0 1+ r

with the characteristic adm, ttance Y assuming i .s transmission-line value.
1



If we substitute into eqn (27) from eqns (25) and (26), we obtain

YV = 2_,B 2+
A  A) B B)

27= 2nIZ A) OL .z 1 (k Aip) + L8kiwEB . 1 (k jp) ~ (28)

r A

using eqn (22) and introducing the dummy variable p' to avoid confusion with

p (which may assume any value in the range rA 4 p < R; for p values within

this range the right-hand side of eqn (28) is actually a constant, although

it looks like a function of p). The integrations in this equation and in the

equations which follow extend over the gap between the conductors at z = 0.

In the present case the dimensions of this gap coincide with those of one of

the pairs of cylinders, but this neec not be the case (for instance, there

might be a diaphragm at z _ 0; or the cylinders might be stepped so that their

radii both increased, which would create a gap smaller than the spacing between

the cylind rs on either s de, as in Fig le). The integrations extend formally

over the area of the gap, and to appl) the method of this memorandum in general

it is necessary to replace the single integrals in eqns (25), (26) and (28) by

double integrals; the formulation in this case is discussed in [I]. However,

the rotational symmetry of the systems represented in Figs 1 allows us to deal

with them using the simpler single integrals.

11 EXPRESSION FOR THE SHUNT AITTANCE

We now express the qtantitics ai and 8 . in terms of 8 . From eqn (21)

we have

J Zl(kAP)O - co( I + rA) + aiZl(kAiP) Zl(kAiP)pdp

rA Ai'=l

(introducing the dummy suf'ix i' to avoid confusion with i)

- f ot(1 + rA)Zl(kAi )dp + aitzl(kAi,p)Zl(kAi )pdp

rA A=i 1A
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(interchanging the order of integration and summation)

= (l + rA) I Z o (kAip) +

Ai 

r

RR

+ ai 2 2+
rA(kAil k;)

R

+ . Z2(kAiP)pd

rA

(using eqns (24c) and (24d))

R

a i f Z2(k iDPdp (29a)

r A

(using eqn (14)).

This is an example of the orthogonality property of the mode functions. The

integral on the last line of eqn (29a) can also be written in closed form

using eqn (24b), but we shall leave it as it is for the time being. We can

also write, using eqn (21),

R

Sz1 Zl(kBjP)pdp - feZl(kBjP)pdp (29b)

rA rB

In terms of our earlier discussion of these integrations, the last equation

transforms an implicit double integral over the gap at z 0 to one over the

whole cross-section there. Since the cross-section consists entirely of the

gap and a flat section (or sections) of perfect conductor, such a transformation

is always possible, even when the system is not rotationally-symetrical (see

[11). In systems like that of Fig le, it is necessary to transform in this way

on both sides of z = 0, and we then have to introduce a third set of orthogonal

functions (orthogonal over the gap, instead of over one of the generalised

20

...L - = . . . .. , .. . . . . . - . . ., . T. . ..



cylindrical cross-sections). In the present problem, fortunately, this

complication is unnecessary.

From eqns (29b) and (21), we now obtain

f pZ I(kBjp)pdp = o(l + rB) + £JZl(kBj'p) zI(kBjP)pdP

rA B '

R

Sf1 Z(kj)pdp (290

rB

on repeating the steps in the derivation of eqn (29a). Substituting eqns (29)

into eqn (28) gives, using the dummy p' as before,

R

RP f ep RJ- IA 7(k A +

r A ih. d\YAi R k ) ' p

rA

f 6pZ (k .ip')p'dp'

+ (iw )( R z1(kBjP) (30)

j=1l 
kp)'pf ZI kBj 'd

rB

Finally, if we multiply this equation throughout by ep and integrate across

the gap (which in our reduced terms is equivalent to multiplying by e and

integrating over the area of the gap) we obtain, on interchanging the order

of integration and summation,

( Zl(kAiP)PdP)

21



jW )( rA  
kBiPp

+ ( j B BjA R)(31)

BJ1 (j 2 (kB49d)
r 
B

12 STATIONARITY AND OTHER VARIATIONAL PROPERTIES

Eqn (31) is a special case of a general formula derived in [1], a so-called

variational formula. The properties of variational formulae are discussed in

[1) and [2] , where it is shown that they have the remarkable property of

stationarity. In our case this means that, if the true field ^ which appears
ep

in eqn (30) is replaced by an irbitrary function eo' then, provided the

arbitrary function (like the true field) satisfies the proper boundary conditions

at the edges of the gap,

3Y 0 when '
ep po

p

A proof of this property is most conveniently given using the development

of the calculus of variations by Courant and Hilbert (5]. They show that a

double integral of the form

b b/ K (p 'p ') LCp (p ) .6p (p ') dpd p ' a  (32a)

a a

where a and b are constants, and K(p,p') is a fixed function satisfying con-

ventional conditions of continuity and differentiability and possessing the

symmetry property K(p,p') K(p',p), will be stationary with respect to changes

in the functional form of ep if its functional gradient, which is

b2 f K(p,p') Ppo)dp' (32b)

a

vanishes for all values of p in the range a < P 4 b. The squared integrals in

22



eqn (31) can be written as double integrals of the form (32a); freely inter-

changing the orders of.integration and sumation, and replacing p by p' where

appropriate, we find thai. eqn (31) and the equation obtained by setting

expression (32a) equal to zero can be identified with each other if we choose

a a rA, b - R and

K(P..P') Z 2(kA.)pd) Z (ki)Z (kAP)' +

i-l (Y J
A

OD -

+ -j Zl (~j~pkIBjP)1 Bjp')PP'

Y (32c)
27T

which has the required symnetry property under interchange of p and p'. It

thon turns out that the finctional gradient, expression (32b), vanishes when

=--p, because of eqn (30).
p

Now, suppose we try to find an approximate value of Y b) using an approxi-

mate function to cepresent w' in eqn (31). If the error in the approximation
matp

P is of the first order of small quaintities, the error in thie computedp
approximate Y will olily be of the second order of smallness, because of the

vanishing partial deuivative with respect to at = This is an
Up p

important consequence of stationarity; but still more im)ortant is the fact

that stationarity gives us a simple mEthod of constructing good approximations

P* If we imagine generalised cylinders to be obtained by translating along

the z-axis the boundary curves of the gap in the plane z = 0, then the mode

functions appropriate to these cylinders satisfy the proper boundary conditions

in the plane of the gap, and so any linear combination of these mode functions

is a possible approximation c^. If we choose a finite linear combination, use

it as an approximaticn^ to represent 6' in eqn (31), and adjust all the
ep p

linear multipliers tc satisfy the stationarity condition (aY/.~p) = 0, we

shall obtain a second-order approximation to the value of Y. By using more and

more mode functions in linear combination, we can obtain a sequence of approxi-

mations tc' the value of Y. Since the mode functions form a mathematically
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"complete" set (see 12] or [5]), we can represent the true ' as accurately

as we please (at least in the mean, which is all that matters) by taking a

sulicient number of them in a suitable linear combination; so, if the

sequence of approximations tends to a limit (which we shall show to be the

case), the limit will be the true value of Y. This is the well-known Ritz

procedure (discussed in [1 1, [2] and [5]).

13 APPROXIMATIONS BY THE RITZ PROCEDURE

We now apply the procedure just described. Let e in eqn (31) be replaced
P

by an approximation &0 of the form

N

F0  = 0+ o kAi' aZ (kAi) (33)
i'=l

since the generalised cylinders constructed by translating along the z-axis

the gap in the plane z = 0 are, in this case, just the same as the cylinders

on the A-side (if they were different from the cylinders on the A and B sides,

as in the system of Fig le, it would be necessary to introduce a third set of

orthogonal mode functions, but in the present problem this complication does

not arise). The factor kAi, in each term of the sum in eqn (33) is inserted

for future convenience, and N is an unspecified positive integer. We then have,

from eqns (24) and (14),

ZR2k i)od = (R2Z (k R) - r Z (k rJ 'Ai 2 r lkAiA A ) (34a)
rA

R

Z2 (k Q)pdo (R2Z2(kBjR) - rZ2(kBrB)) (34b)

rB

d = In (R/r (34c)

r 
A
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RS 1p  1 kAi 2 A î i i lA~ (R 2 Z2(k iR) -_ 2 2(krNf0 ZIlkAiP)PdP i.C iki) -- rZ(ki)) (i N)

rA (34d)

-- (i > N)

R N
SZ 0(k BjrA) k Ai i

f= a0 Bj + E k 2- - )rZ(kAr)z (kr)
rA kBj i j- A BjrA Ai A

(34e)

On making use of eqns (33) and (34) in eqn (31), we obtain an approximation

to Y, Y, given by

N

-- 2n(/A)T R) - k6 222z2 k 1 2 . ^2+
(a A A I (k Ai A 1 ArA).i

+j( nR) l\2z ) - .LA k. <
j-1

+ 2 
2  

2

N 2

Bj

which becomes, on interchanging the order of summation and making some convenient

changes in the dummy variables,

ln(4Z) 2 2Z(kjr)

2j o o/r((k RZ(kR) ))2 (kjrBZl(kjrB))2)

N
2 i kAiRZ (kAiR))2  (kAirAZ (kAirA))])J

25
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N 
20+ 2 L (kAir)) r AB x

4Z. 2( rk (k

0j- Bj A

~4Z 2(R~j rA)

B- Ikgjrg I(kRBjrB))2/]

N N k2 V k 2
A 1 AiA) Ai AZlA A) 2 k2 k 0

~ 'j=l Bj - kAA B- kAi,

Z2P-B4Z(k jr)x~~~ BB A) b
S(kBjRZI(kBjR))2 (kBjrBZI(kBjrB))2) (35)

14 SIMPLIFICATION OF THE APPROXIMATE EXPRESSION

Eqn (35) admits a number of simplifications. In the first place, it is

clear that only the ratios of the (I's are significant, since the equation is

homogeneous in them. It is convenient to write

i (kAirAZl1 (k )) = - aia (36a)

where the ai are the new unknown multipliers.

Secondly, if denotes one of the quantities (kAirA), (kB rB), (kAiR), (kBjR),

we have from eons (12) and (13)

Zl(M)= Jt(E) - (E) Y (E)

0

But for any complex number w, it is true that

JlMYo(w) - Jo(wYl(w) - J(w)Yo'(w) - Yo(w)J'(w) 2

(after [2 or 4J)

provided w # 0, where the prime denotes differentiation; so

26



Z ( ) = 2/(YOY M) (36b)

!A 0, because the kAi, the kBj and rA, rB and R are all strictly positive).

i ~We therefore have, after dividing by ao 02
-2

4Z 2(k )
(In (R/r)) 2  6B 0 BjrA )

A El kABjRZI(k R))2 - (k Z(k+))2

i~ j = Bj -jB1 B'

N 2 [LA ffk AiRZ 1(k AiR)

i T- Ai I (kAir

N [kBjrZ ~ 4Z (k r I

i=l1': AL l Ai

N 2 )Z
2 o Bj 2
kk R _ (k Bjr Z1(k B jR)) 

) (kBrBZ

N N k i2

/k 2 B,

i = 1 j =1ki Bj ki'l

4Z 2 (k r )
xo Bj A I

( RZ (k BR)) _ (k BjrBl(kB rB))

(from eqn (36a))

/ 7 (k r ) (k rBo Bj A 2 c A 0 Ai A I l(

Ai 2 - ) ++ ' Y
(k\Y~kJ) R) (Y (kBAi YkrB))

N NB /22 k
0 Bj

2 2+



Again, from eqns (12) and (13) we have

Z ((J (k .R)Zo(kBjrA) k (kBjrA) _ YokBrAoojA Yo0(k Bj R) 0o BjrA)

so if we define

(J (k r)Y (k R) - J (k R)Yo(k rA 2

x. = o j Bj Bj o BjA (38)

YBj Y (kB~ ~

then

Z 2(k Br )
X. - A 2 (38b)

Y Bj((Y o(k BjR)) - (Yo(kB r)) -2)

If we also introduce the relative permeabilities and permittivities v ,

UB, EA, E., the absolute permeability and permittivity of free space pox Cox

the velocity of light in free space c and the well-known relation ([11 , [ 2])

2~ = i

we obtain, using eqn (6a),

2 2 2
kA = W P A E A / c (38c)

2
with a similar relation for kB, and

C B = E B / G 0 c  (38d)

Introducing eqns (38b) and (38d) into eqn (37), along with the further

definitions

q x (38e)

j.1
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s VokA - ) (38f)

t == x. (38g)
j= Bj Ai

k 2Ui ' = u 2 2 2 2] x. (38h)

j=1 Ai kBj- kAi')

gives us

3N N N N
Y C B q + a 2 - 2 ai i  * a N'

c2(In (R/rai
oi=l i'=l

(39)

15 STATIONARY VALUE OF THE APPROXIMATE ADMITTANCE

Applying the Ritz procedure to determine the stationary value of Y in

eqn (39) is now just a matter of taking its partial derivatives with respect to

each of the a. in turn and setting all the resulting expressions equal to zero.

Taking note of the fact that u., = u.,i (eqn (38h)) it is easy to see that

N N N N

22
,l+ ais. - 2 a t. a aai,u i,

N

2as -2t + 2a u + 2 aiu 9,i

and consequently the values of the ai which make Y stationary are given by

solving the simultaneous linear equations

N

(s + Ui) Nak + d ue, i Nai  , t (Z = 1, 2, ... N) (40)

i-l

i~2
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where a superscript N has been introduced on the a. to stress that their best

values depend on N. Substituting eqns (40) into eqn (39), and writing YN

for the stationary value of Y (which depends on N, because the best values of

the a. do so) we obtain
1

3 7N
Y 2 -- 2q -7 iatB (41)

Po (ln (R/rA))2  
i=l

N

because multiplying each of eqns (40) by the corresponding a£ and then adding

all the results together gives

N N N N
Nas2 + Na a u i  a~t,

I~ t1 i1 Xi £I =I i=l Z=I

It can be seen that the solutions of eqns (40) are real numbers (not

complex ones), because the definitions in eqns (38) show that the known

quantities in eqns (40) are all real. It is then clear, from eqns (36a) and

(33), that the approximate field ' is real, apart possibly from the common
ep

factor a (this implies that the fields due to the individual modes are all in

phase with each other, which is a quite reasonable physical condition for

stationarity). Since u can approach e as closely as we please, and since the
p P

factor a is of no significance in any expression which is homogeneous in~',

it then follows that o in eqn (31) can be taken as a pure real, and consequently

that Y/(jw) is a pure real. Moreover, this pure real is positive, because when

e-n (31) is rewritten as an expression for Y/(j) it becomes apparent that

every quantity in the expression is a perfect square or otherwise known to be

positive (including the integrals in the denominators, which have non-negative

integrands). It is clearly also true, by the same argument, that every YN/(jw)

is a positive real. It follows, therefore, that the quadratic form in the a.

for Y, eqn (39), must be positive-definite, and that it attains an absolute
minimum when the best values given by eqn (40) are inserted in it. If N is

increased to (N + 1), then in terms of the new approximate the old stationary

field is no longer stationary, and when it is made so by replacing the Na. by

the a. it attains a new absolute minimum which must be lower than the old

one. Accordingly the YN/(jw) form a monotonic decreasing real sequence in N,

which is bounded below (since every member of it is positive); and so, since
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can be made to approach as closely as we please by taking N large enough,

it follows that, as N tends to infinity, YN/(j00 tends from above to the value

given by eq (31) when Le, which is Y/(jw).

16 THE DISCONTINUITY CAPACITANCE

We can now complete the formal processes by providing an interpretation of

Y. We have already shown that Y/(jw) is a positive real, and since the

admittance of a capacitance is (juC) when the time variation of the fields is

as exp(jwt) (as assumed at the beginning) it is convenient to interpret Y as the

admittance of a capacitance Y/(jw). This becomes not only convenient but also

natural when we note, from eqns (10), (15c), (38), (39) and (40),that Y/(ju)
2 2

depends only slightly on the frequency (through the influence of k and k B

A B
on the yAi and yBj) when the frequency is well below the upper critical

frequency defined earlier, and that Y/(jw) attains a definite (positive) value

when the frequency is zero (from eqns (15c) and (38c) we then have simply

YAi = kAi' YBj = kBj and there are no numerical difficulties). Also, multiplying

CA and cB simultaneously by a given factor causes the zero-frequency value of

Y/(jw) to increase by the same given factor, a result which remains approximately

true at non-zero frequencies well below the upper critical frequency. These

are all characteristics of a slightly imperfect capacitance; so we conclude that

the equivalent circuit of a system like that of Fig la or Fig lb should b, alim

shunt capacitance, having a value given by N-- (YNi/(j)) with YN defined by

eqn (41). A similar conclusion holds good for the other systems of Figs 1.

Most of the theory of the last few sections can be generalised to more

complicated systems, as discussed in [ 1] ; in particular it is nearly always

possible to establish a variational equation like eqn (31), although the

generalised variational equation will not necessarily lead to a positive-

definite quadratic form. If no such form can be found, the smoothness and

speed of convergence to the true value will be impaired, but convergence will

still occur.

The special case represented by Fig la can be treated by allowing rB to

tend to 0 in the formulae derived above; eqn (lob) reduces to eqn (20a), and

the functions Zo/1/2 (kBj0) reduce to Jo/i/2(kBj ), from eqns (12) and (13) and

the discussion preceding them (note that Yo(kBjrB) tends to infinity as rB

tends to 0). Eqn (38a) then assumes the special form
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. (Jo (kBj rA)Y (kBj R)) (42)
i YBj

No other changes are necessary.

17 PRACTICAL DETAILS OF THE CALCULATION

It only remains to say how eqns (10), (15c), (20a), (38), (40), (41) and

(42) should be used in practice to compute the shunt discontinuity capacitance.

The infinite sums in eqns (38) are naturally truncated to large finite
th

upper limits. If the last term retained is the M , the error committed by

truncation is of the order of M- 2 , as can be shown by the following argument.

Computing some of the sums for typical cases shows that the most important term

in the brace brackets in eqn (41) is the leading term q, as we expect from the

fact that when N = 0 the expression in the brace brackets actually reduces to

q. It follows from eqn (38e) that we can estimate the truncation error by

simply considering eqns (38a) and (42). The discussion in [2] shows that the

large values of kBj are of the asymptotic form j7/(R - rB) (this formula

actually holds fairly well also for small j, and was used to derive the approxi-

mate formulae for the critical frequencies). From [ 21 or [ 41, J(z) and Y (z)

fall off like z -1 for large z, and from eqn (15c) yBj is asymptotic to kBj for

large j. It follows from eqns (38a) and (42) that the x. fall off like
-3 J
j for large j, and the relative error committed by stopping at some large j

equal to M is therefore of the order of

-2
or of the order of M , using integrals to approximate the sums. The error can

therefore be reduced to something of the order of 10- 6 by taking M - 1000, as

was done by Somlo in the program referred to in his paper [ 6]; this is acceptably

small, both in its own right and in comparison with Somlo's estimate of the

accuracy of the whole calculation (which appears to depend mainly on the extra-

polation to infinite N). We therefore cut off all the infinite sums after the

first 1000 terms.
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The Bessel functions can be evaluated by many standard methods and we shall

not discuss them in detail. It is worth noting, however, that since the
th -3

contribution of the J term to each sum falls off in importance like j , it is

acceptable to use methods which give progressively worse accuracy in J (z) and
0

Y (z) as z increases (such as the fast and fairly simple method based on a

Chebyshev series in z for small z and an asymptotic expansion in z for large

z, butted together).

The quantities kAi and kBj can be computed from eqns (10) and (20a), using

standard methods of finding zeros. Since it is necessary to find every zero

in a given range once and only once, it is desirable to use a method which takes

an upper and a lower limit and finds a zero between them, using Bessel function

theory to make sure that there is one and only one zero between the given

limits. Suitable limits may be obtained from the asymptotic formula quoted

above, and its degenerate form for the system of Fig la which is obtainable to

sufficient accuracy by putting rB = 0 (see [2] and [4]). We then find that the

solutions of eqns (lOb) and (20a) each satisfy the relation

r (j -0.3) < kBj (R - rB)(J + 0.3) (43)(R -r B)R

where the (somewhat arbitrary) choice of ± 0.3 is wide enough to include one

zero and narrow enough to include only one (and that one the j th). (From [4],

there are no multiple zeros.) In the same way we can set limits to kAi for use

with eqn (10a).

The solution of eqns (40) for a given N can also be obtained by standard

methods. Because of the positive-definiteness of eqn (39), eqns (40) have a

positive-definite coefficient matrix. This is easily proved by writing

a. = ai/ 1 , when the positive-definite expression in the brace brackets in

eqn (39) assumes the form

N N
-2 2 -+ 2 Tt

is+1i i i'Nl

N N

+i i'=li , uii (44a)
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The homogeneous quadratic form in brackets here is necessarily also positive-

definite, and its associated matrix B, of order (N * 1) x (N + I), is therefore

positive-definite too and has elements bi,i, satisfying the conditions

bi,i, = bi', " and (from expression (44a))

N+l N+l N N
-2 '-2 - +

b.q + a. s- ta aN~z a ib a, aN+l a -2 itNa
i=l i'-l i=l

N N

+ d -i ui,i, aia.- (44b)

i=l i'=l

Equating corresponding terms and taking account of the fact that uj,' = ui',

we have

bb., . = u.., = u,i (i N, i' < N, i' : i)

b. = s. + u. N)

, i,i(iN

(44c)
bN+, = bi,+ = -t. (i N)

bN+l,i bi,N+l (i N

bN+IN+l q

From Sylvester's theorem (see Faddeev and Faddeeva [7]) all the leading

sub-matrices of a positive-definite matrix are also positive-definite, in
the Nth such sub-matrix of B, which consists of the elements bparticular teN sc u-arxo ,wihCnit fteeeet

(i < N, i' < N); and from eqns (44c), this sub-matrix is precisely the

coefficient matrix of eqns (40). Special algorithms exist for solving a system

of equations with a positive-definite coefficient matrix, which reduce by half

the computational effort required; however, none of these algorithms were used

in programming the theory developed above, for reasons which are explained

iater. The positive-definiteness has another and much more important con-

sequence: it guarantees that eqns (40) always possess a unique solution (see

[7). This solution is not necessarily well-determined (eqns (38) show that if

any one of the kBj is nearly equal to one of the kAi, some of the ui,i, and ti

will be very large and not accurately calculable), but in practice i is always

small enough for this problem not to arise. The author's program includes
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a check that no difference (kAi - kBj) is less than 10-3 of the kAi used

in computing it, and this check is always satisfied in the numerical cases so

far treated, which restricts the loss of significant-figure accuracy to an

acceptable three figures.

With the information in this section it is a straight-forward matter to

construct a computer program which will calculate Y N/(jw) for any given N,
using as dp'ta the values of w, VA' 1B' At c.B R, rA, rB, io and c. The

extrapolation to infinite N will now be discussed.

18 EXTRAPOLATION TO INFINITY

The final stage of the computation consists of determining the discontin-

uity capacitance C, Y/(jw), from the values of YN/(jw) for a number of values

of N. It is convenient and makes good mathematical sense to choose

consecutive values of N; in (61, for instance, the values 28, 29. ..... , 40

were used. The theory of [6] is derived from Whinnery et al [8); the final

equations arrived at by these authors are similar to eqns (38) to (41), but no

reasons are given for any of the formal manipulations in [81 , the variational

property is not mentioned, and the results are rather difficult to use because

they have not been simplified as fully as has been done here. (Some of the

difficulties of use are mentioned in [6, and these difficulties and the

inconveniently concise presentation in [8] made it desirable to develop the

theory systematically, so as to throw light on the numerical behaviour of

the approximate solutions). Because the program corresponding to [6 used the

theory of [8], which is similar to that presented above, it was expected that

the convergence would be similar, so an upper limit to the value of N was chosen

at 40. This proved to be satisfactory, which was fortunate because the time

and storage demands of the program would have made it impossible to use a

substantially higher limit.

In [61, and in Bianco et al [9], extrapolation by a hyperbolic fit
- -1

(plotting IN against N ) was described, but the program corresponding to 161

(obtained from the author of that paper) actually used an implementation

(no 215 of the ACM Collected Algorithms [12] )of the e2 transformation described

by Shanks [101, and this more powerful method was employed in the present work.

It is most easily applied to sequences containing (4n + 1) consecutive elements,

n being an integer; the number of elements in the set 28, 29. ......, 40 is of
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this form with n 3, which suggests that Somlo changed his procedure while

he was writing his paper. (He might have been troubled by an error in the

printing of algorithm 215, which at one point has an illegal symbol in place

of a semi-colon). In any case, we are provided with a suitable value of n.

This is not a trivial matter, because the reduction of (4n + 1) elements to a

single final value actually requires n applications of the e2 transformation,

and repeated application of any smoothing algorithm can induce instability when

the differences between successive smoothed values become comparable with

the errors in the values themselves; examination of the intermediate values

produced in the author's program by the smoothing algorithm showed, in fact,

that taking n greater than 3 would have caused this problem to show itself.

Values of C calculated using N = 28, 29. ......., 40 were found to agree
4

with the tabulated values in [(61 to a few parts in 10 . The author's values

were consistently higher, which suggests, in view of the fact that the true

value of C is approached from above as N increases, that the values in [61

are r)re accurate. However, as the calculations actually performed by the two

programs are similar, it seems that the estimated accuracy of a few parts in

105 for the values in [61 may not be attained. For practical purposes the

discrepancy is too small to matter. It is also worth recording that agreement

with the values in 1 6] to a few parts in 103 was achieved using only sets of

YN/(jw) calculated using N = 1, 2. ......, 5 with one application of the e2

transformation; this remarkably high accuracy is a manifestation of the fact

that the YN are second-order approximations to the true value, Y.

19 OTHER COMPUTATIONAL POINTS

It can be seen from eqns (40) that the coefficient matrix in the linear

equations appropriate to any given N contains, as a leading sub-matrix of

itself, the coefficient matrix appropriate to any smaller value of N. One

property of a system of equations having a positive-definite coefficient

matrix is that it can be solved accurately (by Gaussian elimination or by

ret:olving the coefficient matrix into triangular factors) without altering

th, order in which the equations are presented (see Wilkinson [111, and also

(71) so that solving eqns (40) for the largest relevant N does most of the work

of solving them for all smaller values of N; if the solution is undertaken by

triangular factorisation, for instance, the triangular factors of the N
'th

leading sub-matrix of the matrix for the largest N are simply the N
'th leading
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sub-matrices of the triangular factors of the matrix for the largest N. This

fact would have been exploited if it had been necessary to write a routine

for solving simultaneous linear equations instead of simply calling one from

the computer's library; but it was not worthwhile to write a routine specially

because, as we shall now see, the reduction in the number of arithmetic

operations performed during the whole calculation would have been too small

to be useful. From [7] and [11], an ordinary routine for solving N linear

equations in N unknowns requires about N 3/3 multiplications and the same

number of additions, which for N = 28, 29 ........ , 40 gives about 2.10 5

multiplications in total. Examination of eqn (38h) shows that evaluating

each term in the sum giving a ui, i , requires two multiplications, two

divisions and two subtractions, in addition to the time spent in determining

the kAi, kBj and xj;there are N 2/2 distinct ui,i, , and each sum contains
1000 terms; so for N = 40 we must perform about 16.10 5 multiplications and

the same number of divisions (which are at least as time-consuming). These

operation counts are reduced in the author's program by evaluating and storing

some of the quantities ( j/( j - kAi)) beforehand, but only by a factor of

two (no greater saving than this is possible, because the jth term of the

sum defining a ui, i , depends on all three indices, i, i' and j). Consequently

we could only reduce the running time of the program by a small fraction even

if we reduced to negligible proportions the number of arithmetic operations

required to solve the linear equations, so no special algorithms were used.

Finally, we consider the precision to which the calculations must be

carried out. The description in Somlo's paper [6] and his program make it

clear that the results in [6] were calculated using about 17 decimal places

("double-precision"). The author's experience, however, is that 11 decimal

places (corresponding to the storing of a real variable in 48 bits) is

sufficient; this is confirmed by the work reported in [9]. Single-precision

arithmetic gave this number of places on the ICL-1906S computer used by the

author, which saved substantially on time and storage.

20 ERRORS AND TOLERANCES IN PRACTICAL APPLICATION

The work described above was undertaken with the intention of using

calculable coaxial-line discontinuities to construct calculable reflection and

transmission standards. We therefore discuss briefly the errors likely to

arise in such applications, considering (to fix ideas) the device shown in
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Fig 4, which contains a section of oversize inrcr 2onductor and has normal-

size inner on either side of this section. Devices of this kind are already

in use as semi-calculable standards, both in the Microwave Standards Division

of RSRE and at other standards laborato-ies, and it would be useful to make

them fully calculable by doing away witi the need for approximate theory of

the discontinuity effects.

Assuming first that the dimensions of the device are exactly known, we

remark that, since the errors in the capacitances at each of its two steps
14are a few parts in 10 , and since the capacitances are responsible for about

10% of the total reflection (this was established by calculating the reflection

with and without allowance for capacitance), the uncertainty in reflection

coefficient due to direct error in the zapacitances is a few parts in 105.

Analysis over a wide frequency band is performed by interpolation between

capacitance values calculated at "spot" frequencies, but as the frequency

variation of capacitance is very small (1-2% between dc tnd 18 GHz in standard

7 mm line), the error due to inaccurate interpolation will be comparable

with the errors in the "spot" values. Finally, the effect of mutual interference

between the steps may be assessed as negligible. From 111, [2] and [13] it

is known that the presence of a nearby reflector at a distance t from a step

modifies the reflection of an evanescent mode of decay constant y by a factor

varying between coth (Qyt) and tanh (Qy) depending on t ie phase of the TEM

excitation. For small reflection these quantities are both nearly 1, and

their difference is 4e- 9 . If this difference is negligible for even the

smallest significant y (which may be obtained from the u,'per critical frequency

discussed earlier) then interference can be ignored. As an example, the upper

critical frequency for 7 mm line has already been determined (see section 6,

"Generalised modes and critical frequencies") to be 75.1 GRz, so k' of eqn

(2d) is (2ff/c) x 75.1 = 1.5 mm . Up to 18 GHz the difference between

k'2 and (k'2 - k 2 ) is fairly small, so we may take y \, k' u 1.5 mm-1 . It is

then clear that k need only be a few millimetres to make 4e-* an insignificant

quantity; and the total error due to imlerfections in calculating Lhe

capacitances will simply be the sum of the interpolation and direct calculation

errors discussed above, about 1 in 104.

The situation is quite different when we come to consider the effect

of imperfectly-known dimension:;. This has been examined directly; four
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devices of the type shown in Fig 4, based on standard 7 m line and designed

to have convenient maximum VSWRs, were analysed, and the calculations were then

repeated with all the radii altered (in the directions o1 greatest effect) by

0.001 mm, which is the error of th measurements of radius as quoted by the

RSRE metrology section. The general features of the frequency variation of

the reflection coefficient of the device in Fig 4 are shown in Fig 5, and it

is found that the predicted values of the reflection coefficient's maxima may

change by as much as 0.002 for typical sizes of oversized inner conductor.

These changes are small enough to give acceptably small uncertainties on the

predicted values (less than 0.003 total uncertainty), but when they are com-

pared with the uncertainties due to intrinsic error in the calculated

capacitances, it is clear that the precision of the predictions is limited by

the mechanical tolerances; the error of calculation is at least an order of

magnitude smaller. A similar, but even stronger, conclusion is reached in the

analysis of devices like the one in Fig 6, whose general behaviour is shown

in Fig 7. The calculations for these were performed using a novel method of

accurately analysing multi-port networks and cascaded two-ports, which will be

described in a future paper. Compar sons of measurement and prediction for

some of the devices represented in F gs 4 and 6, with a fuller error analysis,

will also be presented at an early fiuture date.

21 CONCLUSIONS

It has been shown that equivalent circuits for problems involving junctions

of two generali:ied cylindrical wavegitides can be found, and a method of cal-

culating their component values has been fully described for the important

special case of a coaxial line with a radial step on its inner conductor

(including the degenerate form of this problem in which the inner conductor is

truncated). The method has been proirammed in Algol-68R on an ICL-1906S

computer, for both the normal and degenerate forms of the problem, and gives

results agreeirg to a few parts in 104 with independent published work. The

results are being applied to the developmei t of calculable reflection and

transmission standards for microwave neasuiements using coaxial lines; in this

application it has b'en shown that th.! accL.racy of prediction of performance

is limited in practi:e only by mechanical tolerances.
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